Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 10: 1063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572203

RESUMO

Congenital Dyserythropoietic Anemia (CDA) is a heterogeneous group of hematological disorders characterized by chronic hyporegenerative anemia and distinct morphological abnormalities of erythroid precursors in the bone marrow. In many cases, a final diagnosis is not achieved due to different levels of awareness for the diagnosis of CDAs and lack of use of advanced diagnostic procedures. Researchers have identified five major types of CDA: types I, II, III, IV, and X-linked dyserythropoietic anemia and thrombocytopenia (XLDAT). Proper management in CDA is still unsatisfactory, as the different subtypes of CDA have different genetic causes and different but overlapping patterns of signs and symptoms. For this reason, we developed a new telemedicine tool that will help doctors to achieve a faster diagnostic for this disease. Using open access code, we have created a responsive webpage named CoDysAn (Congenital Dyserythropoietic Anemia) that includes practical information for CDA awareness and a step-by-step diagnostic tool based on a CDA algorithm. The site is currently available in four languages (Catalan, Spanish, Italian, and English). This telemedicine webpage is available at http://www.codysan.eu.

2.
Pharmaceuticals (Basel) ; 12(1)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678075

RESUMO

Ferritin is a multimeric protein composed of light (L-ferritin) and heavy (H-ferritin) subunits that binds and stores iron inside the cell. A variety of mutations have been reported in the L-ferritin subunit gene (FTL gene) that cause the following five diseases: (1) hereditary hyperferritinemia with cataract syndrome (HHCS), (2) neuroferritinopathy, a subtype of neurodegeneration with brain iron accumulation (NBIA), (3) benign hyperferritinemia, (4) L-ferritin deficiency with autosomal dominant inheritance, and (5) L-ferritin deficiency with autosomal recessive inheritance. Defects in the FTL gene lead to abnormally high levels of serum ferritin (hyperferritinemia) in HHCS and benign hyperferritinemia, while low levels (hypoferritinemia) are present in neuroferritinopathy and in autosomal dominant and recessive L-ferritin deficiency. Iron disturbances as well as neuromuscular and cognitive deficits are present in some, but not all, of these diseases. Here, we identified two novel FTL variants that cause dominant L-ferritin deficiency and HHCS (c.375+2T > A and 36_42delCAACAGT, respectively), and one previously reported variant (Met1Val) that causes dominant L-ferritin deficiency. Globally, genetic changes in the FTL gene are responsible for multiple phenotypes and an accurate diagnosis is useful for appropriate treatment. To help in this goal, we included a diagnostic algorithm for the detection of diseases caused by defects in FTL gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...